Modular construction of a tertiary RNA structure: the specificity domain of the Bacillus subtilis RNase P RNA.

نویسندگان

  • H Qin
  • T R Sosnick
  • T Pan
چکیده

The structure of the specificity domain (S-domain) of the Bacillus subtilis RNase P RNA has been proposed to be composed of a core and a buttress module, analogous to the bipartite structure of the P4-P6 domain of the Tetrahymena group I ribozyme. The core module is the functional unit of the S-domain and contains the binding site for the T stem-loop of a tRNA. The buttress module provides structural stability to the core module and consists of a GA3 tetraloop and its receptor. To explicitly test the hypothesis that modular construction can describe the structure of the S-domain and is a useful RNA design strategy, we analyzed the equilibrium folding and substrate binding of three classes of S-domain mutants. Addition or deletion of a base pair in the helical linker region between the modules only modestly destabilizes the tertiary structure. tRNA binding selectivity is affected in one but not in two other mutants of this class. Elimination of the GA3 tetraloop-receptor interactions significantly destabilizes the core module and results in the loss of tRNA binding selectivity. Replacing the buttress module with that of a homologous RNase P RNA maintains the tRNA binding selectivity. Overall, we have observed that the linker regions between the two modules can tolerate moderate structural changes and that the buttress modules can be shuffled between homologous S-domains. These results suggest that it is feasible to design an RNA using a buttress module to stabilize a functional module.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modular construction for function of a ribonucleoprotein enzyme: the catalytic domain of Bacillus subtilis RNase P complexed with B. subtilis RNase P protein.

The bacterial RNase P holoenzyme catalyzes the formation of the mature 5'-end of tRNAs and is composed of an RNA and a protein subunit. Among the two folding domains of the RNase P RNA, the catalytic domain (C-domain) contains the active site of this ribozyme. We investigated specific binding of the Bacillus subtilis C-domain with the B.subtilis RNase P protein and examined the catalytic activi...

متن کامل

Comparisons between Chemical Mapping and Binding to Isoenergetic Oligonucleotide Microarrays Reveal Unexpected Patterns of Binding to the Bacillus subtilis RNase P RNA Specificity Domain†

Microarrays with isoenergetic pentamer and hexamer 2'-O-methyl oligonucleotide probes with LNA (locked nucleic acid) and 2,6-diaminopurine substitutions were used to probe the binding sites on the RNase P RNA specificity domain of Bacillus subtilis. Unexpected binding patterns were revealed. Because of their enhanced binding free energies, isoenergetic probes can break short duplexes, merge adj...

متن کامل

Efficient fluorescence labeling of a large RNA through oligonucleotide hybridization.

We present an efficient method of introducing fluorophore labels at selected locations in a large RNA. The method is based on specific and highly efficient hybridization between a fluorophore-containing DNA oligonucleotide and a modular hairpin loop replacing a functionally unimportant hairpin loop in the RNA. We demonstrate its feasibility using a 255-nucleotide RNA derived from the catalytic ...

متن کامل

Lead-catalyzed cleavage of ribonuclease P RNA as a probe for integrity of tertiary structure.

Pb(2+)-catalyzed cleavage of RNA has been shown previously to be a useful probe for tertiary structure. In the present study, Pb2+ cleavage patterns were identified for ribonuclease P RNAs from three phylogenetically disparate organisms, Escherichia coli, Chromatium vinosum, Bacillus subtilis, and for E. coli RNase P RNAs that had been altered by deletions. Each of the native RNAs undergoes cle...

متن کامل

The Bacillus subtilis RNA helicase YxiN is distended in solution.

The Bacillus subtilis YxiN protein is a modular three-domain RNA helicase of the DEx(D/H)-box protein family. The first two domains form the highly conserved helicase core, and the third domain confers RNA target binding specificity. Small angle x-ray scattering on YxiN and two-domain fragments thereof shows that the protein has a distended structure in solution, in contrast to helicases involv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 40 37  شماره 

صفحات  -

تاریخ انتشار 2001